Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Alzheimers Dement ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713744

ABSTRACT

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.

2.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712030

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

3.
Aging (Albany NY) ; 16(8): 6694-6716, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663907

ABSTRACT

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.


Subject(s)
Autopsy , CpG Islands , DNA Methylation , Humans , Male , Female , CpG Islands/genetics , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Brain/metabolism , Brain/pathology , Neighborhood Characteristics , Epigenesis, Genetic , Genome-Wide Association Study , Cohort Studies
4.
Alzheimers Dement (Amst) ; 16(2): e12581, 2024.
Article in English | MEDLINE | ID: mdl-38617186

ABSTRACT

INTRODUCTION: Recent Alzheimer's disease (AD) clinical trials have used cerebrospinal fluid (CSF) biomarker levels for screening and enrollment. Preliminary evidence suggests that AD risk is related to impaired renal function. The impact of kidney function on commonly used AD biomarkers remains unknown. METHODS: Participants in studies conducted at the Goizueta Alzheimer's Disease Research Center (N = 973) had measurements of serum creatinine and CSF AD biomarkers. General linear models and individual data were used to assess the relationships between biomarkers and eGFR. RESULTS: Lower estimated glomerular filtration rate (eGFR) was associated with lower amyloid beta (Aß)42/tau ratio (p < 0.0001) and Aß42 (p = 0.002) and higher tau (p < 0.0001) and p-tau (p = 0.0002). The impact of eGFR on AD biomarker levels was more robust in individuals with cognitive impairment (all p-values were < 0.005). DISCUSSION: The association between eGFR and CSF AD biomarkers has a significant impact that varies by cognitive status. Future studies exploring this impact on the pathogenesis of AD and related biomarkers are needed. Highlights: There is a significant association between Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers and both estimated glomerular filtration rate (eGFR) and mild cognitive impairment (MCI).Kidney function influences CSF biomarker levels in individuals with normal cognitive function and those with MCI.The impact of kidney function on AD biomarker levels is more pronounced in individuals with cognitive impairment.The variation in CSF tau levels is independent of cardiovascular factors and is likely directly related to kidney function.Tau may have a possible role in both kidney and cognitive function.

5.
Environ Health Perspect ; 132(4): 47001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567968

ABSTRACT

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer's disease (AD), but little is known about the biological effects of fine particulate matter (PM2.5, particulate matter with aerodynamic diameter ≤2.5µm) on early predictors of future disease risk. OBJECTIVES: We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2.5 and cerebrospinal fluid (CSF) biomarkers of AD. METHODS: We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45-75 y of age) from the Emory Healthy Brain Study in Georgia in the United States. CSF biomarker concentrations of Aß42, tTau, and pTau, were collected at enrollment (2016-2020) and analyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2.5 concentrations were estimated at a 1-km and 250-m resolution, respectively, and computed for each participant's geocoded address, using three exposure time periods based on specimen collection date. Associations between PM2.5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes, were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass index, and neighborhood socioeconomic status). RESULTS: Interquartile range (IQR; IQR=0.845) increases in 1-y [ß:-0.101; 95% confidence interval (CI): -0.18, -0.02] and 3-y (ß:-0.078; 95% CI: -0.15, -0.00) ambient PM2.5 exposures were negatively associated with Aß42 CSF concentrations. Associations between ambient PM2.5 and Aß42 were similar for 5-y estimates (ß:-0.076; 95% CI: -0.160, 0.005). Dichotomized CSF variables revealed similar associations between ambient PM2.5 and Aß42. Associations with traffic-related PM2.5 were similar but not significant. Associations between PM2.5 exposures and tTau, pTau tTau/Aß42, or pTau/Aß42 levels were mainly null. CONCLUSION: In our study, consistent trends were found between 1-y PM2.5 exposure and decreased CSF Aß42, which suggests an accumulation of amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503.


Subject(s)
Air Pollutants , Air Pollution , Alzheimer Disease , Adult , Humans , United States , Particulate Matter/analysis , Air Pollutants/analysis , Alzheimer Disease/epidemiology , Cross-Sectional Studies , Environmental Exposure/analysis , Air Pollution/analysis , Biomarkers/analysis
6.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659743

ABSTRACT

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

7.
Data Sci Sci ; 3(1)2024.
Article in English | MEDLINE | ID: mdl-38680829

ABSTRACT

There is no gold standard for the diagnosis of Alzheimer's disease (AD), except from autopsies, which motivates the use of unsupervised learning. A mixture of regressions is an unsupervised method that can simultaneously identify clusters from multiple biomarkers while learning within-cluster demographic effects. Cerebrospinal fluid (CSF) biomarkers for AD have detection limits, which create additional challenges. We apply a mixture of regressions with a multivariate truncated Gaussian distribution (also called a censored multivariate Gaussian mixture of regressions or a mixture of multivariate tobit regressions) to over 3,000 participants from the Emory Goizueta Alzheimer's Disease Research Center and Emory Healthy Brain Study to examine amyloid-beta peptide 1-42 (Abeta42), total tau protein and phosphorylated tau protein in CSF with known detection limits. We address three gaps in the literature on mixture of regressions with a truncated multivariate Gaussian distribution: software availability; inference; and clustering accuracy. We discovered three clusters that tend to align with an AD group, a normal control profile and non-AD pathology. The CSF profiles differed by race, gender and the genetic marker ApoE4, highlighting the importance of considering demographic factors in unsupervised learning with detection limits. Notably, African American participants in the AD-like group had significantly lower tau burden.

8.
JAMA Neurol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683602

ABSTRACT

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

10.
Sci Total Environ ; 923: 171535, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453069

ABSTRACT

Air pollution and neighborhood socioeconomic status (N-SES) are associated with adverse cardiovascular health and neuropsychiatric functioning in older adults. This study examines the degree to which the joint effects of air pollution and N-SES on the cognitive decline are mediated by high cholesterol levels, high blood pressure (HBP), and depression. In the Emory Healthy Aging Study, 14,390 participants aged 50+ years from Metro Atlanta, GA, were assessed for subjective cognitive decline using the cognitive function instrument (CFI). Information on the prior diagnosis of high cholesterol, HBP, and depression was collected through the Health History Questionnaire. Participants' census tracts were assigned 3-year average concentrations of 12 air pollutants and 16 N-SES characteristics. We used the unsupervised clustering algorithm Self-Organizing Maps (SOM) to create 6 exposure clusters based on the joint distribution of air pollution and N-SES in each census tract. Linear regression analysis was used to estimate the effects of the SOM cluster indicator on CFI, adjusting for age, race/ethnicity, education, and neighborhood residential stability. The proportion of the association mediated by high cholesterol levels, HBP, and depression was calculated by comparing the total and direct effects of SOM clusters on CFI. Depression mediated up to 87 % of the association between SOM clusters and CFI. For example, participants living in the high N-SES and high air pollution cluster had CFI scores 0.05 (95 %-CI:0.01,0.09) points higher on average compared to those from the high N-SES and low air pollution cluster; after adjusting for depression, this association was attenuated to 0.01 (95 %-CI:-0.04,0.05). HBP mediated up to 8 % of the association between SOM clusters and CFI and high cholesterol up to 5 %. Air pollution and N-SES associated cognitive decline was partially mediated by depression. Only a small portion (<10 %) of the association was mediated by HBP and high cholesterol.


Subject(s)
Air Pollutants , Air Pollution , Cognitive Dysfunction , Hypercholesterolemia , Hypertension , Humans , Aged , Hypercholesterolemia/chemically induced , Depression/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Social Class , Air Pollutants/analysis , Cognitive Dysfunction/epidemiology , Hypertension/chemically induced , Cholesterol , Environmental Exposure , Particulate Matter/analysis
11.
Res Sq ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38464223

ABSTRACT

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

12.
Alzheimers Dement ; 20(4): 2538-2551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345197

ABSTRACT

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Subject(s)
Alzheimer Disease , DNA Methylation , Humans , Alzheimer Disease/genetics , Neuroinflammatory Diseases , Particulate Matter/adverse effects , Brain
13.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328211

ABSTRACT

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

14.
Alzheimers Dement ; 20(4): 2698-2706, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400532

ABSTRACT

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Biomarkers , Double-Blind Method , Latent Class Analysis , Positron-Emission Tomography/methods
15.
Neuron ; 112(7): 1110-1116.e5, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38301647

ABSTRACT

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Knockdown of ε4 may provide a therapeutic strategy for AD, but the effect of APOE loss of function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of controls and patients with AD and identified seven heterozygote carriers of APOE LoF variants. Five carriers were controls (aged 71-90 years), one carrier was affected by progressive supranuclear palsy, and one carrier was affected by AD with an unremarkable age at onset of 75 years. Two APOE ε3/ε4 controls carried a stop-gain affecting ε4: one was cognitively normal at 90 years and had no neuritic plaques at autopsy; the other was cognitively healthy at 79 years, and lumbar puncture at 76 years showed normal levels of amyloid. These results suggest that ε4 drives AD risk through the gain of abnormal function and support ε4 knockdown as a viable therapeutic option.


Subject(s)
Alzheimer Disease , Humans , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Longevity/genetics
16.
Neurology ; 102(5): e209162, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38382009

ABSTRACT

BACKGROUND AND OBJECTIVES: Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS: A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS: Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION: Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects ß-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Cross-Sectional Studies , Genotype , Brain/pathology , Apolipoproteins E/genetics
17.
medRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260316

ABSTRACT

Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.

18.
IEEE Trans Biomed Eng ; 71(4): 1197-1208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37943643

ABSTRACT

OBJECTIVE: Individuals with cognitive impairment (CI) exhibit different oculomotor functions and viewing behaviors. In this work we aimed to quantify the differences in these functions with CI severity, and assess general CI and specific cognitive functions related to visual exploration behaviors. METHODS: A validated passive viewing memory test with eyetracking was administered to 348 healthy controls and CI individuals. Spatiotemporal properties of the scanpath, the semantic category of the viewed regions, and other composite features were extracted from the estimated eyegaze locations on the corresponding pictures displayed during the test. These features were then used to characterize viewing patterns, classify cognitive impairment, and estimate scores in various neuropsychological tests using machine learning. RESULTS: Statistically significant differences in spatial, spatiotemporal, and semantic features were found between healthy controls and individuals with CI. The CI group spent more time gazing at the center of the image, looked at more regions of interest (ROI), transitioned less often between ROI yet in a more unpredictable manner, and exhibited different semantic preferences. A combination of these features achieved an area under the receiver-operator curve of 0.78 in differentiating CI individuals from controls. Statistically significant correlations were identified between actual and estimated CI scores and other neuropsychological tests. CONCLUSION: Evaluating visual exploration behaviors provided quantitative and systematic evidence of differences in CI individuals, leading to an improved approach for passive cognitive impairment screening. SIGNIFICANCE: The proposed passive, accessible, and scalable approach could help with earlier detection and a better understanding of cognitive impairment.


Subject(s)
Cognitive Dysfunction , Humans , Cognitive Dysfunction/diagnosis , Neuropsychological Tests , Cognition , Machine Learning
19.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38038976

ABSTRACT

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Subject(s)
Alzheimer Disease , Cognition , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid , Black or African American , White
20.
JAMA Neurol ; 81(2): 107-108, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38109088

ABSTRACT

This Viewpoint discusses direct-to-consumer biomarker tests for Alzheimer disease and their implications on future insurance coverage.


Subject(s)
Alzheimer Disease , Direct-To-Consumer Screening and Testing , Insurance , Humans , Alzheimer Disease/diagnosis , Genetic Testing , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...